EX PARTE OR LATE FILED

WILEY, REIN & FIELDING

1776 K STREET, N.W. WASHINGTON, D.C. 20006 (202) 429-7000

WRITER'S DIRECT DIAL NUMBER (202) 828-3182

May 24, 1996

FACSIMILE (202) 429-7049

RECEIVED

MAY 2 4 1995

Mr. William S. Caton Federal Communications Commission 1919 M Street, N.W.; Room 222 Washington, D.C. 20554

FEDERAL COMMUNICATIONS COMMISSION OFFICE OF SECRETARY

Re: Notification of Ex Parte Contact in WT Docket No. 95-56

Dear Mr. Caton:

ProNet Inc. ("Pronet"), by its attorneys, hereby notifies the Commission of an ex parte contact in WT Docket No. 95-56. Today, David Wood, President of ProNet Tracking Systems, and Robert Pettit and myself from Wiley, Rein & Fielding, met with Rosalind Allen and D'wana Speight of the Wireless Telecommunications Bureau to discuss issues set forth in the attached documents.

Should any questions arise concerning this notification, please contact the undersigned at (202) 828-3182.

Respectfully submitted,

Eric W. DeSilva

Encl. (2)

cc (w/encl.): Rosalind Allen

D'wana Speight Roger Noel

By Lot Copies rec'd O+ L

CAMPUS "PANIC ALERT" APPLICATIONS OF PRONET ETS TECHNOLOGY May 24, 1996

Violent and non-violent crime on campuses and universities is a rising problem, especially for smaller institutions.

- Campuses and universities are, unfortunately, characterized by irregular hours for both students and faculty in buildings that are difficult to secure and often empty.
- As funds for education are decreased, campus and university security are stretched thinly over vast areas, many with multiple buildings, dark areas, and badly lit parking lots and recreational areas.

ProNet has available to it a "panic button" system derived from proven ETS technology that can be an effective deterrent to campus attacks.

- Students and faculty are issued keychains that incorporate ETS-type transmitters that can be activated in the event of danger simply by pressing a panic button.
- Campus security utilize ETS tracking technology to rapidly "zero in" on a potential incident and prevent loss of property, injury, or possibly death.
- ProNet has deployed its panic button technology on an experimental basis at Nazareth College near Rochester, New York. Users report excellent results.
- Campus and university security applications of ETS technology are consistent with the technical rules proposed for LPRS, but require minor modifications to the eligibility and permissible communications rules, as detailed in ProNet's comments.

Based on feedback from experimental deployments, ProNet has been requested to implement a "confirmation" signal for campus and security applications.

- Students, faculty, and security officers believe a confirmation signal indicating "help is on the way" would provide an effective deterrent to attacks in progress.
- Students and faculty have also indicated that the ability to "test" devices prior to entering dangerous areas would be beneficial.
- ProNet believes a "reverse" transmission to activate a second light in the panic device could be implemented simply and consistent with the technical rules for LPRS.
- The permissible communications rule proposed for the service permits only "one-way" communications, which appears to foreclose the use of an automatically triggered confirmation pulse.
- ProNet urges the Commission to modify the permissible communications rule to permit "one-way, or confirmatory or test, transmissions."

Tracking System Update

Index

U	racking System History
	Current/Future Users
	ProNet Tracking System Statistics
	Frequency Requirements

Summary of Support Letters

History of the Tracking System

1972-1988

• Texas Instruments designs and operates (on experimental license) "Tracking System" to apprehend bank robbers (4 cities, 4,800 "TracPacs").

1988

- ProNet purchases all Tracking System technology from Texas Instruments.
- ProNet resumes process of securing permanent frequency for operation of the Tracking System.

When ProNet purchased ETS from Texas Instruments, the FCC granted the Experimental License's to ProNet under the express condition that ProNet make all efforts to change appropriate FCC rules to allow ETS to operate on a permanent basis. Initially, ProNet sought to comply with this condition in the 220-222 MHz allocation proceeding.

1988-1991

- ProNet supported PCC's proposal to create two hundred (200) 5 KHz channel pairs.
- FCC proposal did not provide for specific law enforcement channels. Thus, ProNet requested that the
 FCC designate ten (10) adjacent narrowband simplex channels for local and state public safety tracking
 needs and ten (10) similar channels for joint federal/state use.
- Significant public support in the record for ProNet's proposal. Nevertheless, the FCC decided only to set
 aside ten (10) public safety channels, which were limited to the Public Safety Radio Service. This
 decision did not help ProNet because only public officials (i.e. police) are eligible to be licensees under
 that band and private licensees, such as ProNet, would not be eligible.
- In response, the FCC directed that ProNet pursue a reallocation of spectrum for ETS in the 216-220 MHz band.

July 1991

- In response to this PCC decision, ProNet filed a Petition for Rulemaking and Request for Grant of Pioneer's Preference to operate permanently on the 218-219 MHz band.
- This reallocation was opposed by the Association for Maximum Television, Inc. ("MSTV") and Watercom, an AMTS licensee operating in this band.

September 1991

 Representatives of ProNet met with the following FCC officials regarding the status of ProNet's Petition for Rulemaking:

Cheryl Tritt - Legal Advisor to Chairman Sikes

Dr. Brian Fontes - Special Advisor to Commissioner Quello

Stevenson Kaminer - Special Advisor to Commissioner Marshall

Madeline Kuchera & Robert Branson - Advisors to Commissioner Barrett Leonard Kennedy - Senior Legal Advisor to Commissioner Duggan Ralph Haller, Kent Nakamura, Ron Netro, and Beverly Baker - Private Radio Bureau Fred Thomas, Rod Small & Jeff Kam - Officer of Engineering and Technology

June 1992

- ProNet met with FCC officials and advised them that the 218-219 MHz band would be unusable for ETS
 due to the IVDS and 220-222 MHz allocations that had just been approved by the Commission.
- The FCC recommended that ProNet amend its pending Petition for Rulemaking to propose other feasible channels. Thus in early 1993, ProNet informally requested that the FCC defer action on the Petition.

June 1992

• ProNet also met with Danny Coulson at the FBI to inform them of the threat to ETS and solicit their help in obtaining permanent spectrum.

July 1992

 ProNet sent numerous letters to members of Congress requesting their support in trying to obtain permanent spectrum for PTS to operate.

September 1992

• FBI Director, Bill Sessions, responds to a letter from Senator Lloyd Benson to the Attorney General's Office in which he requested pertinent information on the use of ProNet Tracking Systems (PTS).

October 1992

ProNet met with the FBI to determine what level of support the FBI would be willing to provide.

December 1992

 ProNet met with Deputy Assistant Director - FBI Technical Branch, Kerr Boyd, to solicit his support on behalf of the Technical operations group for obtaining permanent spectrum.

February 1993

 ProNet met with Dave Siddell, Chief of the PCC's Frequency Allocation Branch, to discuss the possibly of staying somewhere in the 219-220 MHz band. However, PCC's March 1993 Notice of Proposed Rulemaking filed by the American Radio Relay League, to reallocate this band for the amateur service, forecloses its availability.

March 1993

- ProNet met with officials from NTIA, FCC & FBI to work on a plan to find available spectrum for PTS to operate.
- One possible alternative came out of this meeting and that was to talk to the Department of Commerce
 Spectrum planners about possibility of sharing the 403-406 MHz band with the National Weather Service.
 This band is used by the weather service and others to launch weather balloons for collecting
 meteorological data.

April 1993

 ProNet met with Dick Barth, Director of Radio Frequency Management for Department of Commerce, and representatives of the National Weather Service. We discussed the feasibility of using the 403-406 MHz band for the PTS operation. It was agreed that ProNet could build some prototype equipment that would operate in this band and conduct some tests with the National Weather Service to determine if there was any interference concerns.

August 1993

- ProNet met with representatives from MSTV (this group is the watchdog agency responsible for
 protecting the rights of the broadcast industry) to solicit their support for PTS operation in the 216-217
 MHz band.
- MSTV suggested that we contact Phonic ear who had recently filed a Petition for Rulemaking to use 216-217 MHz for low power auditory assistance use to see if both parties could work together and perhaps file joint petition to the FCC.

October 1993

- ProNet met with Phonic representatives to discuss possibility of sharing the 216-217 MHz band. At this
 meeting it was decided that both companies could work together and would file supporting comments with
 the FCC to indicate such.
- ProNet modified its original Petition for Rulemaking and submitted a new Petition to operate PTS in the 216-217 MHz band.

May 1996

- FCC issued Notice of Proposed Rulemaking for 216-217 MHz band.
- Public response favorable for permanent LETS (Law Enforcement Tracking Service) channels as proposed by FCC.
- Congress passes 1991 Campus Security Act and subsequent acts which create demand for RF security devices.
- ProNet Tracking technology well suited to Campus Security.
- ProNet suggests XX frequencies be opened to Campus Security use.

1988-1996

- ProNet expands to 30+ markets
- ProNet expands to 28,000 TracPacs
- Significant number of captures results in reduction of U.S. robberies FBI

Operating Systems

Problem: Tracking Systems

ProNet Tracking Systems Cities Installed

Southern California

Long Beach: Signal Hill

Los Angeles County:

Artesia
Bellflower
Cerritos
City of Industry

Downey Hawaiian Gardens

La Mirada Lakewood Norwalk Paramount Santa Fe Springs

Orange County:

Anaheim Brea Buena Park City of Orange Costa Mesa Cypress Corona Del Mar

El Toro
Fountain Valley
Fullerton
Garden Grove

Huntington Beach
Irvine
La Palma
Los Alamitos
La Habra
Laguna Niguel
Laguna Hills
Mission Viejo
Newport Beach

Newport Beach
Placentia
Santa Ana
San Clemente
San Juan Cap.
Seal Beach
Stanton

Orange County (cont.)

Tustin Villa Park Westminster Yorba Linda

Pasadena

Northern California

Fresno: Clovis

Oakland: Berkeley

Sacramento:

Carmichael
Citrus Heights
Elk Grove
Fair Oaks
Folson
Gold River
Rancho Cordova
Rio Linda
Roseville

San Francisco

Northwest Bellingham

Portland: Gersham

Multnomah Washington Co.

Tacoma

Southwest Las Vegas:

N. Las Vegas

Phoenix

Tucson

Southwest (cont.)

Scottsdale, Mesa, Tempe

Reno:

Carson City Centerville Douglas Dresserville Gardnerville Minden Sparks Sun Valley Washoe

Texas
Austin:

Roundrock

Dallas:

Addison Carrollton Richardson

Houston:

Hedwig Village Spring Branch

San Antonio:

Windcrest Alamo Heights

<u>Other</u> Anchorage

Puerto Rico:

Island of Puerto Rico San Juan

Little Rock:

Sherwood
Jacksonville
N. Little Rock

ProNet Tracking Systems Law Enforcement Agencies

ALASKA

Anchorage Police Department

ARIZONA

Mesa Police Department
Phoenix Police Department
Scottsdale Police Department
Tempe Police Department
Tucson Police Department

ARKANSAS

Jacksonville Police Department Little Rock Police Department N. Little Rock Police Department Sherwood Police Department

CALIFORNIA

Anaheim Police Department Berkeley Police Department Brea Police Department **Buena Park Police Department** City of Orange Police Department Clovis Police Department Costa Mesa Police Department Cypress Police Department Downey Police Department Fountain Valley Police Department Fresno Police Department **Fullerton Police Department** Garden Grove Police Department **Huntington Beach Police Department** Irvine Police Department La Habra Police Department La Palma Police Department Long Beach Police Department Los Alamitos Police Department Los Angeles Co. Sheriff's Office Newport Beach Police Department Oakland Police Department Orange County Sheriff's Dept. Pasadena Police Department Placentia Police Department Roseville Police Department Sacramento Police Department Sacramento Co. Sheriff's Office San Clemente Police Department San Francisco Police Department San Francisco Sheriff's Office

Seal Beach Police Department
Signal Hill Police Department
Tustin Police Department
Westminster Police Department

NEVADA

Carson City Police Department
Douglas Co. Sheriff's Office
Las Vegas Police Department
Minden/Gardenville Police Department
N. Las Vegas Police Department
Reno Police Department
Sparks Police Department
Washoe County Sheriff's Dept.

OREGON

Beaverton Police Department
Gresham Police Department
Hillsboro Police Department
King City Police Department
Multnomah County Sheriff's Office
Portland Police Bureau
Tigard Police Department
Tualatin Police Department
Washington Co. Sheriff's Office

PUERTO RICO

San Juan Police Department

TEXAS

Addison Police Department
Austin Police Department
Carrollton Police Department
Dallas Police Department
Farmers Branch Police Department
Hedwig Police Department
Highland Park Police Department
Houston Police Department
Richardson Police Department
San Antonio Police Department
Spring, Valley Police Department
The Villages Police Department
University Park Police Department
Windcrest Police Department

WASHINGTON

Bellingham Police Department Tacoma Police Department

RIS Customers Banks

Addison National Bank
American Bank
American Bank of Commerce
American Commerce Nat. Bank
American Federal Svgs. Bank
American National Bank
Ameriway Bank
Antoine National Bank

Banco Central Corp. Banco del Comerciod P.R. Banco Popular Banco Santander Bank of America Bank of Austin Bank of Boston Bank of Fresno Bank of Newport Bank of San Pedro Bank One Bayview Fed. Bank Beilingham Natl. Bank Bent Tree National Bank Bluebonnet Svgs. Bank Brookhollow National Bank

Calibur Bank Capitol National Bank Cattlemen's State Bank Cerritos Valley Bank Charter Bank Chase Manhattan Bank Citibank Colonial Bank Comeria Bank Compass Bank Comstock Bank Continental Sygs. Bank Cornerstone Bank Corporate Bank Crown Charter Bank Cullen Frost Bank

El Dorado Svgs. Bank

L'quitable Bank

First City
First Credit Bank
First Federal Svgs. Bank
First Interstate Bank
First NW Bank
First State Bank
First Texas Bank
First Western Bank
Founders National Bank
Franklin Federal Bancorp

Gateway Bank Great Am. Bank Guaranty Fed. Svgs. Bank

Home Bank
Houston Independent Bank
Huntington National Bank

Inwood National Bank

Key Bank

Liberty National Bank

Marine National Bank Metro Bank Mother Lode Svgs. Bank

National Bank of Alaska
National Bank of Commerce
NationsBank
Nevada Community Bank
N. Dallas Bank & Trust
N. Pacific Bank
Northpark National Bank
NW Community Bank

Pacific First Bank
Park Forest Natl. Bank
Pioneer Citizens Bank

Ponce Fed. Bank
Post Oak Natl. Bank
Primerit Svgs. Bank
Promenade Bank
Provident Bank
Puget Sound Bank

Queen City Bank Questar Bank

Regency Bank Riverbend Bank River Oaks Bank Riverway Bank

Santander Fed. Svgs. Bank Santander Natl. Bank Scotia Bank de P.R. Seafirst Bank Security Pacific Bank S. California Bank S. California Bank SW Bank of Texas State Bank & Trust Stemmons NW Bank Sun State Bank Swiss Avenue Bank

Team Bank
Texas Bank & Trust
Texas Commerce Bank
Texas First Natl. Bank
Town North Natl. Bank

Union Bank
United American Bank
United Labor Bank
U.S. Bank
University Svgs. Bank

Valley Bank

Wells Fargo West One Bank

PTS Customers Credit Unions/Savings & Loans

Alaska USA Federal CU
Alaskan Federal CU
American Central CU
American First Fed. CU
Anaheim Area CU
Arizona FCU
Atlantic Financial Svgs.
Austin CU Manag.
Austin Federal CU
Austin Municipal FCU
Austin Teachers CU
Austin Telco CU

Bergstrom Fed. C.U. BN West CU

Capitol CU
Century Federal Svgs.
Communicators Fed. CU
Community CU
Consolidated Fed. CU

Dallas Chapter CU Dallas Fed. CU

Electra CU

Farm & Home Svgs.
Fedalaska Fed CU
Fireside Thrift & Loan
First CA. FCU
First Federal CU
Fred Meyer Fed. CU
First Western Svgs.
Freedom Fed. Svgs.
Fullerton Svgs. & Loan

GAPAC Empl. FCU
Gentelco Fed. CU
Golden One CU
Golden West Cities Fed. CU

Government Emp. CU Great Basin Fed. CU Greater Texas Fed. CU

HEB Credit Union
Homestead Svgs.
Horizon CU
Horizon Savings
Houston Police CU
Hughes Aircraft Empl FCU

IBEW & United Workers CU
IBEW Plus CU
IBM Tx. Empl. Fed. CU
Industrial Credit Union
Intalco Empl. CU
Ironworkers Fed. CU

Jantzen Empl. CU

Legacy Fed. CU
Long Beach Gentelco FCU
Long Beach Postal CU
Luke FCU

Marine Air Fed. CU
Metro-Medical Fed. CU
Mountain View FCU
Multco CU

Orange Co. FCU
Orange Co. Postal CU
Oregon Central CU
Oregon CU League
Oregon FCU
Oregon Rails Fed. CU
Oregonian Fed. CU
Otis CU

Pacific Empl. CU

Pacific Northwest Fed. CU
Patelco CU
Portland A.C. Emp. CU
Portland Post Emp. CU
Portland Teachers CU
Primerit Svgs. & Loan
Providence Hosp. CU
Public Empl. CU

Rose City Fed. CU

SAFCU Center CU
S.P. Sparks Empl. Fed. CU
Safeway NW Central CU
Sirerra Pacific Empl. CU
Sierra Schools Fed. CU
Silver State Schl. Fed. CU
SW Airlines CU
SW Health Care CU
So Val Tel FCU
Sparks City Empl. Fed. CU
State Center CU
State Empl. CU
Sunbelt Federal Svgs.

Tacoma Postal FCU
Texas FCU
Texas Health Dept. CU
Texas Star Fed. CU
Trucking Empl. Fed. CU

UFCW NW Fed. CU United NW Fed CU United Savings University Fed. CU

Westop CU, Western Federal Savings Weststar Fed. CU Whatcom Ed. CU Wood Products CU

Future Tracking Installations Approved for Scheduling

City

Fort Worth, TX

Atlanta, GA

Baltimore, MD

Miami, FL

Orlando, FL

Milwaukee, WI

San Jose, CA

Boston, MA

Philadelphia, PA

Police Department

Fort Worth PD

Atlanta PD

Baltimore PD

Miami PD

Orlando PD

Milwaukee PD

San Jose PD

Boston PD

Philadelphia PD

Orange County Robberies 1990 thru 1995

PRONET TRACKING

Texas Bank Robbery Reduction City Comparison

Seattle
Miami
Philadelphia
San Jose
Atlanta
Population 4,500,000

Population 4,500,000 Robberies 746/year, 1995 One robbery/5,000 people

One robbery/5,000 per Detroit

Cleveland New Orleans Boston Denver Milwaukee St. Louis Kansas City

> Population 4,500,000 Robberies 768/year, 1995 One robbery/5,860 people

Dallas
San Antonio
Austin
Houston

Population 4,500,000 Robberies 67/year, 1995 One robbery/67,000 people U.S. Bank Robberies

ProNet Tracking Systems Statistics

	April 1996 YTD	Last 12 Months
All PTS Systems:		
Incidents (with TracPacs given)	93	317
Captures	37	138
\$ Recovered	\$353,521	\$968,173

Frequency Requirements

The graph entitled "Incident RF Power in PTS Receiver Passband" (Figure 1) shows the issue of concern regarding frequency spectrum allocation. On initial inspection, it appears that the PTS transmitter has some amount of headroom over the residual energy from users on either side. While this is true, the real concern is the magnitude of this residual energy inside the PTS receiver desense curve as shown in red.

Noting that the graphs vertical axis is logarithmic, it can be seen that even the lower energy level from the 220 - 222 MHz Narrowband Radio Service is on the order of one million times the power necessary to activate the PTS receiver (at the receiver's tuned frequency). The out-of-band energy from the IVDS Radio Service, is even more severe due to less stringent frequency specifications. If an interfering source is transmitting while a track is in progress, The PTS receiver will no longer be capable of "hearing" the PTS transmitter because the stronger interfering signal has caused the PTS receiver to listen to it instead.

An analogy would be like two people listening to different radio stations in the same room. One person is listening to station A at a normal volume, and the other person is listening to Station B at maximum volume. Both people only hear Station B's program until Station B is turned off or the radio playing Station B is removed from the room.

The PTS receiver, due to its sensitivity, has the ability to pick up a signal that conventional radios would never "hear". However, this keen sensitivity causes the PTS receiver to be adversely affected by nearby radio transmissions. This effect is also aggravated as the distance between the PTS transmitter and the PTS receiver is increased. The real-world result of this phenomenon is that the PTS receiver's tracking range will be severely reduced when it is operating in close proximity to an interfering source.

To minimize the adverse effect of these transmissions, some degree of compromise is possible if the interfering sources are mobile in nature or they see only intermittent use. In the past, both conditions were true for the original PTS frequency allocation (216 - 220 MHz). Those who were closest in frequency were typically intermittent, mobile users; while the higher power users on the low side were geographically well separated in addition to being intermittent.

The recent FCC frequency allocations for Interactive Video Data Services (IVDS) and the 220-222 MHz Narrowband technology will be neither isolated nor intermittent, and will cause the effectiveness of the PTS Tracking System to become useless.

In trying to locate spectrum in which the PTS System can operate, a similar analysis should be undertaken for each prospective choice. The best selection would be one which provides minimum encroachment into the PTS receiver's desense curve, as shown in Figure 1.

Finally, the PTS transmitter should be compatible with other low power users due to its mobility and the intermittent nature of its operation.

Incident RF Power in PTS Receiver Passband

── ■ IVDS Spectrum

── * PTS RCVR Desense

+ NB Radio Service
O PTS Transmitter

Channel 13 TV Interference Test

Type Set	Year	Range for No Interference
JVC - 19"	92	< 1 FT
JVC - 27"	92	< 3 FT
DAYTRON - 19"	80	< 27 FT
MAGNAVOX - 19"	85	< 20 FT -
ZENITH - 19"	85	< 25 FT
PANASONIC - 12"	85	< 25 FT
BLK & WHT - 10"	80	< 30 FT

The above test were conducted with a 100 mW, 216.8 MHz PTS Beacon with external rabbit ear antennas on the TV sets which were tuned for weak signal reception of Ch 13. In all cases, the range is the distance from the TV at which no observable interference occurred.

These measurements were made in Dallas at nominal ranges of 40 miles from the Ch 13 TV tower.

In bench tests, the effective power output of the Tag Signal which causes noticeable video interference to a TV set at 214 MHz is -75 dBm. For a typical TV sensitivity of -95 dBm, the total pathloss required to prevent this type of interference is 20 dB. This correlates to approximately one wavelength away from the TV which would be 4.5 feet.

The interference caused by the peak power from a PTS beacon is shown in the PTS Tag Spectrum (see figure 2). The interference generated by the tag is -48 dBm at the sound carrier frequency. The required path loss to prevent interference would be the difference between a typical TV's receiver sensitivity (-95dBm) and the interfering signal level of -48 dBm. Therefore, the isolation or path loss needed to prevent interference is 47 dB. The PTS beacon has a -10 dB gain antenna which means that we would need an additional path loss of 37 dB. To achieve the additional 37 dB of path loss, a distance of 25 feet is required between the beacon and the TV receiver.

Summary Table Based On Peak Spectrum Levels (30 KHz BW)

Interference Level at Ch-13 Sound Carrier Typical TV Receiver Sensitivity	=	-48 dBm -95 dBm
Required Path Loss For No Interference	=	-47 dB
Less PTS Tag Antenna Loss		-10 dB
Adjusted Path Loss For No Interference Equivlent Distance (Wavelengths/Feet)	= =	-37 dB 5.6/25 ft

Average power levels are typically 20 db below peak levels

PTS TAG SPECTRUM (216.8 MHz, 90 Hz MODULATION) PEAK LEVELS MEASURED IN A 30 kHz BAND WIDTH

CENTER FREQUENCY = CH-13 SOUND CARRIER PEAK LEVEL = 67.7 DBC

PTS TAG SPECTRUM (216.8 MHz, 90 Hz MODULATION) PEAK LEVELS MEASURED IN A 10 kHz BAND WIDTH

CENTER FREQUENCY = CH-13 SOUND CARRIER PEAK LEVEL = 76.2 DBC

Channel 13 De-Sense Levels For Ground Trackers (*)

(De-Sense Level IN db) / [% of Available Tracking Range]

		Distance from Ch-13 (Miles)	
PTS Frequency	<u>0 -> 5</u>	<u>5 -> 10</u>	<u>-> 10</u>
219.96 MHz	(10) / [72%]	(0) / [100%]	(0)/[100%]
216.80 MHz	(12) / [64%]	(0) / [100%]	(0) / [100%]
216.40 MHz	(15) / [58%]	(1) / [99%]	(0) / [100%]

(*) Based on a nominal receiver sensitivity of -130 dBm

Channel 13 De-Sense Levels For Remotes & Helicopters (*)

(De-Sense Level in db) / [% of Available Tracking Range]

		Distance from Ch-13 (Miles)	
PTS Frequency	<u>0 -> 5</u>	<u>5 -> 10</u>	<u>-> 10</u>
219. 96 MHz	(17) / [52%]	(11) / [70%]	(5) / [85%]
216.80 MHz	(20) / [48%]	(14) / [62%]	(8) / [78%]
216.40 MHz	(21) / [45%]	(14) / [62%]	· (9) / [75%]

(*) Based on a nominal receiver sensitivity of -130 dBm

Summary of Letters Law Enforcement

Name

Richard Alves Charles Brobeck

Tal. Danasa

John Brunner

D G Coppa Plui Davis

LR DeVore

Lee Dolum

Albert Ehlow D L Forkus

Steve Foster

Bobby Gillman
Philip Goehring

Karen Goesch

Charles Gruber

Jim Guess Ronald Hansen

Ray Hawkins
Dennis Jefcoat
G. Patrick Johnson

Stanley Kantor Richard Kirkland

Robert Kliesmet

Ronald Lowenberg Michael McCrary

Richard McKee

Ronald Mechan
Joseph Molloy

Robin Montgomery

John Moran

Manuel Ortega
Donald Pierce
William Rathburn

Bobby Richardson Lyle Rodabough

Steven Ruteshouser

W D Steams
Gary Taylor
Richard Tefank

Thomas Van Doren

Paul Walters Elizabeth Watson Richard Whitaker

Steve Williams

Title

Coordinator, Robbery Apprehension Team

Chief of Police

Lt. #820, Robbery Section

Undersheriff

Captain, Technical Services Division Commander, Investigations Division

Deputy Chief, Office of Administrative Services

Chief of Police Chief of Police

Captain, Operations Division Commander

Special Agent in Charge

Chief of Police

Sheriff's ETS Coordinator

Chief of Police Chief of Police Chief of Police

Deputy Chief of Police
Senior Police Officer
Supervisor, Violent Crimes
Acting Chief of Police
Interim Chief of Police
International President

Chief of Police
Chief of Police

Captain, Communications Bureau

Chief of Police Chief of Police

Special Agent in Charge

Sheriff

Chief of Police Chief of Police Chief of Police

Captain, Communictions Systems Supervisor

Captain, General Investigations Bureau

Sgt., Robbery Division

Chief of Police ETS Coordinator Chief of Police

Assistant Chief of Police

Chief of Police Chief of Police

Supervisory Special Agent

Detective, Robbery/Homicide Division

Law Enforcement Department

San Francisco Police Department

Irvine Police Department

San Francisco Police Department Washoe County Sheriff's Office Sacramento Police Department

Sacramento County Sheriff's Department

Sacramento Police Department
San Clemente Police Department

Brea Police Department Tustin Police Department FBI - Dallas, Texas

Fullerton Police Department

Sacramento County Sheriff's Department

Shreveport Police Department
Los Alamitos Police Department
Fayetteville Police Department
Dallas Police Department
Costa Mesa Police Department

FBI - Atlanta, Georgia
Anaheim Police Department
Reno Police Department

International Union of Police Association
Huntington Beach Police Department

Signal Hill Police Department

Las Vegas Metropolitan Police Department

La Habra Police Department Anaheim Police Department FBI - Portland, Oregon

Las Vegas Metropolitan Police Department

Placentia Police Department Bellingham Police Department Dallas Police Department

Highland Park Police Department Phoenix Police Department

Phoenix Police Department
Houston Police Department
Seal Beach Police Department
Addison Police Department
Buena Park Police Department
University Park Police Department
Santa Ana Police Department
Houston Police Department

FBI - Las Vegas, Nevada Fountain Valley Police Department

Summary of Letters Financial Institutions

Name	<u>Title</u>	Financial Institution Name
C. Kenneth Arnold	Vice President, District Security	Federal Reserve Bank of San Francisco
William L. Bell	Security Director	First Interstate Bank
James L. Beveridge	Vice President, Security Director	Bank One, Texas
Robert Burns	Manager	Multco Credit Union
Richard J. Carr	Vice President, Director of Security	United Savings, FSB
Monte C. Dunn	AVP/Director, Corporate Security	Sunbelt Savings, FSB
Jimmy Gastineau	Security Officer	Valley Bank of Nevada
Walter R. Heilner	Vice President and Senior Deputy Director	Bank of America
Mary B. Hudson	AVP/Financial Operations	Bellingham National Bank
Keith D. Marshall	Vice President, Deputy Director of Security	First Interstate Bank
Arnold E. Nielsen	Vice President, Director of Security	Century Federal Savings & Loan Assoc.
J. Roger Ouellette	Director of Security	PriMerit Bank
Thomas J. Patrick	Executive Director	Southwestern Automated Clearing House

Wells Fargo Bank

NationsBank Texas

Mercury Savings and Loan Association

AVP/Security Manager

Vice President, Director of Security

Security Department

Ronald L. Renfro

Robert D. Sanders

Steven R. Shulman